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Abstract 

In this paper, we study that the existence of rotationally symmetric harmonic 
diffeomorphism between the punctured complex plane with hyperbolic metric or 
Euclidean metric. 

1. Introduction 

The existence or nonexistence of harmonic diffeomorphisms between 
Riemannian manifolds was studied by many people, see example [1-4, 6-13] 
and the references therein. In particular, in [6, 10, 12, 13], the authors 
therein studied the rotational symmetry case. The corresponding 
questions of Euclidean metric is related to the Nitsche conjecture, see, for 
example, [5, 14]. Recently, [3, 4, 9] focus on the question of the existence 
of harmonic diffeomorphism between Riemannian surfaces of annular 
topological. For example, in [4], Chen et al. proved some necessary and 
conditions for existence of rotationally symmetric harmonic 
diffeomorphism between the annuli with the Poincaré metric or 
Euclidean metric. 
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In this notes, using similar methods of [3, 4], we are able to prove 
that the existence of rotationally symmetric harmonic diffeomorphism 
between the punctured complex plane with the hyperbolic metric or 
Euclidean metric. More precisely, let us denote 

( ) { } { },0,\and0,\ >≤=>≤= ∗ bbzaazaP b CCD  

where D  is the unit disc and z is the complex coordinate of .C  

Now we state our the main results of this paper. 

Theorem 1.1. For any ,0,0 >> db  there exists rotationally 

symmetric harmonic diffeomorphism from ∗
bC  to ∗

dC  with its hyperbolic 

metric. 

Theorem 1.2. For any ,10,0 <<> ab  there is no rotationally 

symmetric harmonic diffeomorphism from ∗
bC  onto ( )aP  with the 

Poincaré metric; on the other hand, there exists rotationally symmetric 

harmonic diffeomorphism from ( )aP  onto ∗
bC  with its hyperbolic metric. 

At the same time, we will also consider the Euclidean case, and will 
prove the following theorems: 

Theorem 1.3. For any ,0,0 >> db  there exists rotationally symmetric 

harmonic diffeomorphism from ∗
bC  onto ∗

dC  with its Euclidean metric. 

Theorem 1.4. For any ,10,0 <<> ab  there is no rotationally 

symmetric harmonic diffeomorphism from ∗
bC  onto ( )aP  with its 

Euclidean metric. The converse implications are true. 

The organization of this paper is as follows. In Section 2, we will 
prove Theorems 1.1 and 1.2. Theorems 1.3 and 1.4 will be proved at the 
last section. 
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2. Case of the Non-Euclidean Metric 

For convenience, let us recall the definition about the harmonic maps 
between surfaces. Let M and N be two oriented surfaces with           

metrics 22 dzτ  and ,22 duσ  respectively, where z and u are local 

complex coordinates of M and N, respectively. A 2C  map u from M to N 
is harmonic if and only if u satisfies 

.02
=

σ
σ

+ zz
u

zz uuu   (2.1) 

Our first goal is to show that Theorem 1.1. 

Proof of Theorem 1.1. First of all, let us denote ( )θ,r  as the polar 

coordinates of ,∗bC  and u as the complex coordinates of ∗
dC  in .C  The 

hyperbolic metric du1σ  on ∗
dC  can be written as 

,2
22 du

dud
−

  (2.2) 

where u  is the norm of u with respect to the Euclidean metric. 

Given u is a rotationally symmetric harmonic diffeomorphism from 
∗
bC  onto ∗

dC  with the metric .1 duσ  Because ∗∗
db CC ,  and the metric 

du1σ  are rotationally symmetric, we can assume that such a map u has 

the form ( ) .θ= ierfu  By substituting 1, σu  into (2.1), we can get 

( ) .for02
2

22
222 br

r
ff

df
f

r
f

r
ff >=








−′

−
−−

′
+′′   (2.3) 

Since u is a harmonic diffeomorphism from ∗
bC  onto ,∗

dC  we have 

( ) ( ) ( ) ,for0and, brrffdbf >>′+∞=+∞=   (2.4) 

or 

( ) ( ) ( ) .for0and, brrfdfbf ><′=+∞+∞=   (2.5) 
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Regarding r as a function of f, we have the following relations: 

., 31
fffrrfr rrfrf −− −==   (2.6) 

Combining (2.3) with (2.6), we get 

( ) ( ) [ ( ) ] .02 32
22

32 =
′

−
′

−
+

′
+

′
−

′′
r
rfr

r
df

ffr
r

r
r

r
r   (2.7) 

Let ( ) ( ),ln frx ′=  by (2.7), we obtain that 

( ) ( ) .02 32322 =+−+′− ffdxfxxdf  

Solving the above Bernoulli equation, one gets 

( ) ,222
0

22 dfcfx −+=−   (2.8) 

for some nonnegative constant 0c  depending on the choice of the   

function f. Therefore, 

( )
.1

222
0

2 dfcf
x

−+
=  

For the case ,00 =c  we have 

,0 fr k=   (2.9) 

where 0k  is some constant. Solving Equation (2.9) with (2.4), we have 

,rb
df =   (2.10) 

and 

( ) .0>=′
b
drf  

Equation (2.9) contradicts to the boundary condition (2.5). 
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Now we consider the case ,00 >c  we get 

( )
.1ln

222
0

2
dt

dtct
td

fr −+
= ∫∫

∞+∞+
  (2.11) 

For ,0>r  the improper integral of Equation (2.11) on the right is the 
convergence and on the left is divergent. This leads to a contradiction. We 
completed the proof of Theorem 1.1.   

Now we want to prove Theorem 1.2. 

Proof of Theorem 1.2. Let us begin to show the first part of this 
theorem. The idea is similar to the proof of Theorem 1.1 in [4], so we just 
sketch the proof here. Using (2.7) in [4], we have 

( ) ,1 22
1

22 fcfx −+=−   (2.12) 

with the boundary condition 

( ) ( ) ( ) ,for0and1, brrffabf >>′=+∞=   (2.13) 

or 

( ) ( ) ( ) .for0and,1 brrfafbf ><′=+∞=   (2.14) 

The proof is by contradiction. Under the condition (2.13), suppose there 
exist a function ( )rf  satisfies (2.12), then similar to (2.11), we can get 

( )
.

1
1ln

22
1

2

1
dt

tct
td

fr −+
= ∫∫

∞+
 

Note that the left integral is divergent for any ,0>r  so we cannot find a 
function ( )rf  such that .0>′f  This contradicts to the assumption of 

(2.13). Hence such a rotationally symmetric harmonic diffeomorphism 
with the boundary condition (2.13) does not exist. Similarly, one can show 
that there is no rotationally symmetric harmonic diffeomorphism with 
the boundary condition (2.14). Therefore, the first part of Theorem 1.2 
holds. 
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Now let us prove the second part of this theorem. From the proof of 
Theorem 1.1, it suffices for us to show that the equation 

( ) ,222
2

22 bfcfx −+=−   (2.15) 

with the boundary condition 

( ) ( ) ( ) ,1for0and1, <<>′+∞== rarffbaf   (2.16) 

or 

( ) ( ) ( ) .1for0and1, <<<′=+∞= rarfbfaf   (2.17) 

Firstly, consider the .02 =c  By Equation (2.15), we get 

,1fr k=   (2.18) 

for 1k  to denote a generic constant. Combining Equation (2.18) with 
(2.16) or (2.17), we easy to see Equation (2.18) has no solution. 

Now we consider ,02 >c  then the improper integral 

( )
df

bfcfb 222
2

2
1

−+
∫

∞+
 is convergent for any .0>b  In this case, let 

us consider the harmonic diffeomorphism with the boundary condition 
(2.16), which say ( ) ( ) .1, +∞== fbaf  By solving Equation (2.15), we can 
get 

( )
.1ln

222
2

2

1
df

bfcf
rd

ba −+
= ∫∫

∞+
  (2.19) 

Similarly, combining Equation (2.15) with (2.17), we have 

( ) ( )
.11ln

222
2

2222
2

2

1
df

bfcf
df

bfcf
rd

b

b

a −+
=

−+
−= ∫∫∫

∞+

∞+
 

Note that the right improper integral of the Equation (2.19) is divergent 
for any .1,02 arc >><  Hence any rotationally symmetric harmonic 

diffeomorphism from ( )aP  onto ∗
dC  should satisfy (2.19) for some 

.02 >c  Let 
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( )
( )

.1ln
222

2
2

1
2 df

bfcf
rdcg

ba −+
−= ∫∫

∞+
 

It is easy to see that ( )2cg  is a monotonically increasing continuous 

function with 

.0limand0lnlim
022

<∞−=>−=
→+∞→

gag
cc

 

Therefore, there exists 2c  such that ( ) .02 =cg  

The proof of the second part of Theorem 1.2 is now complete.   

 

3. Case of the Euclidean Metric 

We are going to prove Theorem 1.3. 

Proof of Theorem 1.3. Let us prove this theorem. The ideal is 
similar to the proof of Theorem 1.3 in [3], so we just sketch the proof 

here. Suppose there is such a harmonic diffeomorphism ϕ  from ∗
bC  onto 

∗
dC  with its Euclidean metric with the form ( ) ,θ=ϕ ierh  then we can get 

,0for02 >>=−
′

+′′ br
r
h

r
hh   (3.1) 

with the boundary condition 

( ) ( ) ( ) ,0for0and, >>>′+∞=+∞= brrhhdbh   (3.2) 

or 

( ) ( ) ( ) .0for0and, >><′=+∞+∞= brrhdhbh   (3.3) 

Solving (3.1), one get 

( ) ,4
3 rcr

crh +=   (3.4) 
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where 43 and cc  are constants. Clearly, combining (3.4) with (3.3) have 

no solution. By Equation (3.4) and condition (3.2), we can get 

,2
43 bcbdc −=   (3.5) 

and from ( ) ,0>′ rh  we get 

.2and2 43 b
dcbdc ><   (3.6) 

Provided that Equations (3.5) and (3.6), there exists the equation h. We 

have thus proved Theorem 1.3.   

Proof of Theorem 1.4. Let us begin to show the first part of this 
theorem, i.e., the nonexistence of rotationally symmetric harmonic 

diffeomorphism from ∗
bC  onto ( )aP  with its Euclidean metric. This 

theorem can be proved by the same method as employed in the last 
theorem, it suffices for us to show that there is no function h such that 

( ) ,4
3 rcr

crh +=   (3.7) 

with the boundary condition 

( ) ( ) ( ) ,0for0and1, >>>′=+∞= brrhhabh   (3.8) 

or 

( ) ( ) ( ) ,0for0and,1 >><′=+∞= brrhahbh   (3.9) 

for suitable constants .and 43 cc  From (3.7), we know that ( ) 0=+∞h  or 

±∞  which contradicts the boundary condition. So the first part of this 
theorem holds. 

Now let us prove the second part of this theorem, that is, show the 
nonexistence of rotationally symmetric harmonic diffeomorphism from 

( )aP  onto ∗
bC  with its Euclidean metric. Similar to the proof of the first 

part, it suffices for us to show that there is no function h such that 
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( ) ,4
3 rcr

crh +=   (3.10) 

with the boundary condition 

( ) ( ) ( ) ,1for0and1, <<>′+∞== rarhhbah   (3.11) 

or 

( ) ( ) ( ) .1for0and1, <<<′=+∞= rarhbhah   (3.12) 

Clearly, (3.10) guarantees ( )1h  and ( )ah  are finite. This contradicts the 

conditions (3.11) and (3.12). Hence such a function h does not exist, the 
second part of Theorem 1.4 has been proved.   
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